Analisis SPSS

Thursday, January 24, 2013
12:04 AM

Uji Normalitas

Uji Normalitas

Uji normalitas berguna untuk menentukan data yang telah dikumpulkan berdistribusi normal atau diambil dari populasi normal. Metode klasik dalam pengujian normalitas suatu data tidak begitu rumit. Berdasarkan pengalaman empiris beberapa pakar statistik, data yang banyaknya lebih dari 30 angka (n > 30), maka sudah dapat diasumsikan berdistribusi normal. Biasa dikatakan sebagai sampel besar.

Namun untuk memberikan kepastian, data yang dimiliki berdistribusi normal atau tidak, sebaiknya digunakan uji statistik normalitas. Karena belum tentu data yang lebih dari 30 bisa dipastikan berdistribusi normal, demikian sebaliknya data yang banyaknya kurang dari 30 belum tentu tidak berdistribusi normal, untuk itu perlu suatu pembuktian. uji statistik normalitas yang dapat digunakan diantaranya Chi-Square, Kolmogorov Smirnov, Lilliefors, Shapiro Wilk.

Metode Chi Square

(Uji Goodness Of Fit Distribusi Normal)

Metode Chi-Square atau X2 untuk Uji Goodness of fit Distribusi Normal menggunakan pendekatan penjumlahan penyimpangan data observasi tiap kelas dengan nilai yang diharapkan.





Keterangan :
X2 = Nilai X2
Oi = Nilai observasi
Ei = Nilai expected / harapan, luasan interval kelas berdasarkan tabel normal dikalikan N (total frekuensi) (pi x N)
N = Banyaknya angka pada data (total frekuensi)


Komponen penyusun rumus tersebut di atas didapatkan berdasarkan pada hasil transformasi data distribusi frekuensi yang akan diuji normalitasnya, sebagai berikut:





Keterangan :
Xi = Batas tidak nyata interval kelas
Z = Transformasi dari angka batas interval kelas ke notasi pada distribusi normal
pi = Luas proporsi kurva normal tiap interval kelas berdasar tabel normal
Oi = Nilai observasi
Ei = Nilai expected / harapan, luasan interval kelas berdasarkan tabel normal dikalikan N (total frekuensi) (pi x N)



Persyaratan Metode Chi Square (Uji Goodness of fit Distribusi Normal)
a. Data tersusun berkelompok atau dikelompokkan dalam tabel distribusi frekuensi.
b. Cocok untuk data dengan banyaknya angka besar ( n > 30 )
c. Setiap sel harus terisi, yang kurang dari 5 digabungkan.


Signifikansi:
Signifikansi uji, nilai X2 hitung dibandingkan dengan X2 tabel (Chi-Square).
Jika nilai X2 hitung < nilai X2 tabel, maka Ho diterima ; Ha ditolak.
Jika nilai X2 hitung > nilai X2 tabel, maka maka Ho ditolak ; Ha diterima.


Contoh:
Diambil Tinggi Badan Mahasiswa Di Suatu Perguruan Tinggi Tahun 2010




Selidikilah dengan α = 5%, apakah data tersebut di atas berdistribusi normal ? (Mean = 157.8; Standar deviasi = 8.09)
Penyelesaian :
1. Hipotesis :
  • Ho : Populasi tinggi badan mahasiswa berdistribusi normal
  • H1 : Populasi tinggi badan mahasiswa tidak berdistribusi normal

2. Nilai α
  • Nilai α = level signifikansi = 5% = 0,05

3. Rumus Statistik penguji











Luasan pi dihitung dari batasan proporsi hasil tranformasi Z yang dikonfirmasikan dengan tabel distribusi normal atau tabel z.







4. Derajat Bebas

  • Df = ( k – 3 ) = ( 5 – 3 ) = 2

5. Nilai tabel

  • Nilai tabel X2 ; α = 0,05 ; df = 2 ; = 5,991. Baca selengkapnya tentang Tabel Chi-Square.

6. Daerah penolakan

  • - Menggunakan gambar



  • - Menggunakan rumus:   |0,427 | < |5,991| ; Keputusan hipotesis: berarti Ho diterima, Ha ditolak
7. Kesimpulan:  Populasi tinggi badan mahasiswa berdistribusi normal α = 0,05.


Untuk Metode yang lain, yaitu Liliefors, Kolmogorov Smirnov dan Saphiro Wilk akan dibahas dalam artikel lainnya.

Untuk Pengujian Normalitas dalam SPSS, Baca: Normalitas Pada SPSS

Baca Juga Tentang: "Uji Homogenitas"





6 comments :

  1. ijin ngopi penjelasannya, bro. maklum gagap statistik.

    ReplyDelete
  2. mas aku mau nanya..... aku punya penelitian.. setiap sampling aku ngerjain duplo ( atau 2 replikasi) trus aku sampling 5 kali.... jadi aku punya 10 sampel.... nah setiap sampel aku ukur dengan 2 metode analisis yang berbeda. Jadi tiap sampel pake 2 metode.....
    yang mau aku tanyakan uji normalitasnya aku bandingkan dari masing - masing metode.... atau aku bandingin antar metodenya.... makasih ya

    ReplyDelete
    Replies
    1. Uji normalitas tergantung uji yang digunakan, karena uji normalitas berbed tiap uji statistik, misal pada regresi linear, normalitas pada resiudalnya, sedangkan pada independen t test, uji normalitas pada var terikat tiap kelompok/kategori

      Delete
  3. saya ingin tanya, bila saya ingin melakukan uji normalitas terhadap 2 kelompok percobaan, harus dilakukan uji normalitas per kelompoknya atau dapat digabung?

    ReplyDelete
    Replies
    1. Lakukan pada per kelompok. Lebih jelasnya anda pelajari di: One Way Anova dalam SPSS.

      Delete

Tinggalkan Komentar Anda Di Sini

Analisis SPSS